5(x^2+2)=2x^2+41

Simple and best practice solution for 5(x^2+2)=2x^2+41 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(x^2+2)=2x^2+41 equation:



5(x^2+2)=2x^2+41
We move all terms to the left:
5(x^2+2)-(2x^2+41)=0
We multiply parentheses
5x^2-(2x^2+41)+10=0
We get rid of parentheses
5x^2-2x^2-41+10=0
We add all the numbers together, and all the variables
3x^2-31=0
a = 3; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·3·(-31)
Δ = 372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{372}=\sqrt{4*93}=\sqrt{4}*\sqrt{93}=2\sqrt{93}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{93}}{2*3}=\frac{0-2\sqrt{93}}{6} =-\frac{2\sqrt{93}}{6} =-\frac{\sqrt{93}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{93}}{2*3}=\frac{0+2\sqrt{93}}{6} =\frac{2\sqrt{93}}{6} =\frac{\sqrt{93}}{3} $

See similar equations:

| (4x)+(2x+30)=180 | | X^2+Y^2+13y=y-32 | | (x+5)^2+12=76 | | 3w+7=3w-5 | | 13^2=39x | | F(8)=3x+2.5 | | z/3=z/9+6/3 | | 18x+6=10x+10x | | -8+10=2(5-4x) | | 3h+-5+11=17 | | (x+8)2-9x=52 | | 6-2x+1=-5 | | 10*2x=70 | | 25−2x=20−2(x−1) | | (4x+29)=(7x+5) | | 9x^2+3x=1/81 | | 4x+8-2x-10=16 | | 12x4560=B | | (3x+14)=(6x+4) | | x+((240-x)/2)=180 | | x+((240/x)/2)=180 | | (13x^2+5x)-2(x^2+1)=0 | | -9=-8-8n+7 | | (280+10x)=3(60+10x) | | (9x+12)+12x=180 | | x÷6/7=32/5 | | x+11x=300 | | (2x+1)=37 | | 2x-10/x^2=0 | | x/9x15-47=28 | | 2x+2=198 | | x+(x/2)=900 |

Equations solver categories